Sketching Concurrent Data Structures

Armando Solar-Lezama, Christopher Grant Jones, Rastidik

University of California, Berkeley
{asolar, cgjones,bodik}@eecs.berkeley.edu

Abstract

We describe PSETCH, a program synthesizer that helps program-
mers implement concurrent data structures. The systemsisdba
on the concept of sketching, a form of synthesis that alloves p
grammers to express their insight about an implementatioon a
partial program: a sketch. The synthesizer automaticaltypietes
the sketch to produce an implementation that matches a gimen
rectness criteria.

PXETCH is based on a new counterexample-guided inductive
synthesis algorithm (CEGIS) that generalizes the origgkattch
synthesis algorithm from [20] to cope efficiently with con@nt
programs. The new algorithm produces a correct implemientat
by iteratively generating candidate implementationsning them
through a verifier, and if they fail, learning from the cousteam-
ple traces to produce a better candidate; converging tadioln
a handful of iterations.

PXETCH also extends SETCH with higher-level sketching
constructs that allow the programmer to express her insaght
a “soup” of ingredients from which complicated code fragisen
must be assembled. Such sketches can be viewed as syntctic d
scriptions of huge spaces of candidate programs (b8&rcandi-
dates for some sketches we resolved).

We have used the R&TCH system to implement several
classes of concurrent data structures, including lock-freeues
and concurrent sets with fine-grained locking. We have &stched
some other concurrent objects including a sense-revelsing
rier and a protocol for the dining philosophers problem;tladise
sketches resolved in under an hour.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guage§ Language Constructs and Features; D.&@ffware En-
gineering: Design Tools and Techniques

General Terms Languages, Design

Keywords Sketching, Synthesis, Concurrency, SAT, SPIN

1. Introduction

programmers must maintain this consistency while keepintyat
exclusion to a minimum, in order to prevent the data striecttom
becoming a sequential bottleneck in a highly concurrentiegp
tion. In order to achieve this, data-structure designerstmasort

to complex schemes to maintain the consistency with only fine
grained locking, or even without using locks at all, relyiogly

on atomic primitives provided by the hardware. Finally, twen-
position of concurrent objects is far from trivial, so libyesbased
approaches will not shield programmers from the complesitf
concurrent data structures.

In this paper, we argue that program synthesis in the form of
sketching can be an important element in helping programmer
cope with these daunting challenges. Sketching is a fornoff s
ware synthesis designed to make programming easier bynigelpi
programmers focus on the high-level implementation sgsasnd
leave the low-level details to the synthesizer. With skietghthe
programmer creates an implementation by writing a sketch — a
partial program containing only the easier-to-write paststhe
code, together with additional insight to help synthesize te-
maining “holes”. In this way, the programmer is relievednfrthe
most demanding aspects of programming, while still maiitaj
full control over the implementation.

Previous work applied Sketching to the development of aiphe
and error correction codes, and to important classes ohtsfide
programs [18, 20]. But the R&TCH synthesizer described in this
paper is the first sketch synthesizer capable of reasoningtab
concurrency. PBETCH extends the original EEETCH system with
a new synthesis algorithm based on the concept of counteza
guided inductive synthesis (CEGIS). The new system alss add
high-level sketching constructs to the original languageking it
easier to express insights about the implementation withaxing
to think about the details.

Like its predecessor, the R8TCH synthesizer performs com-
binatorial synthesis, framing the synthesis problem asaechefor
a sketch completion that satisfies a given correctnesgiarifhe
synthesis algorithm uses counterexample-guided incrisiwmthe-
sis (CEGIS) to search this space efficiently. CEGIS worksdsy s
lecting candidate implementations from the space, themgutsie

Data structures designed to be shared among many concurrentounterexample produced by a verification procedure togain

threads are among the most complex programs one can wrissn |
than a thousand lines of code. The source of this compleaitybe
traced back to the requirement that the data structure aiaiobn-
sistency in the presence of many simultaneous updates.oviene

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'08, June 7-13, 2008, Tucson, Arizona, USA.
Copyright(© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00

large fraction of the search space when the selected cdadila
shown to be wrong. The key innovation in RErcHis to reformu-
late CEGIS for the case when the counterexample produceteby t
verifier is no longer an input, but an execution trace on thecsed
candidate. By reformulating CEGIS in this way, we are abl@ake
any verifier capable of producing counterexample tracesiaadt

to build a sketch synthesizer.

The new high-level sketching constructs make it easy for the
programmer to use the synthesizer. For example, the progeam
can now ask the synthesizer to discover the correct ordering
operations in a block. This is especially useful in the corent
setting, where programmers must often expend considee#fiole:
determining the right point to release a lock, or the righywa

www.manaraa.com

order a sequence of updates to shared data. The new cosstruct
also make it simple to constrain the set of pointer expressibat

the synthesizer can use to complete a pointer-valued hdls. T
makes it very easy for programmers to provide partial irtsigh
about complex pointer-manipulations.

We have used the R&TCH system to implement several
classes of concurrent data structures, including lock-freeues
and concurrent sets with fine-grained and optimistic logkiVe
have also sketched some interesting concurrent objedtsling a
sense-reversing barrier and a protocol for the dining pbiphers
problem. The synthesizer is able to quickly search througir-e
mous spaces of candidate programs; in one of our benchniarks,
example, the synthesizer was able to find a correct impleatient
for a lock-free queue from a space of more thdi candidate
implementations in about 50 minutes.

In summary, the key contributions of the paper are.

1. A generalization of the CEGIS approach to synthesizeusnc
rent programs.

2. A set of language extensions and high-level construcssipe
port sketching of concurrent data structures.

3. An experimental evaluation of sketching for concurreatad
structures.

Section 2 is a tutorial on sketching for concurrent datacstru
tures. Section 3 provides a brief introduction to the setjakn
SKETCH language, and Section 4 introduces the extended PS-
KETCH language. Section 5 describes the CEGIS algorithm for se-
quential programs, and Section 6 shows how we generalized it
handle concurrent programs. Section 7 demonstrates honethe
sketching constructs are implemented on top of the basedayey
and Section 8 contains our empirical evaluation okPECH.

2. Sketching with Concurrency

In this section we introduce sketching of concurrent datactires
from the programmer’s point of view. We show how—with only a
few constructs for sketching concurrent operations—thg8H
language allows the programmer to express enough of thetisteu
to synthesize a correct and efficient implementation, a&lwinile
having only a partial knowledge about how the final prograrh wi
work. We will walk through the development using a problem

assigned two years ago in a undergraduate exam on operatind"'

systems.

We start by quoting the exam problem. Deceitfully simple,
the problem was successfully answered by less than 30% of the
students, even with additional hints (which we omitted).

Lock-Free Queue.An object such as a queue is considered
“lock-free” if multiple processes can operate on this obgmulta-
neously without requiring the use of locks, busy-waitingsieep-
ing. We will construct a lock-free FIFO queue using an atomic
“swap” operation. This queue needs bottEagueue and abequeue
method.

Instead of the traditionalead andTail pointers, we will have
PrevHead andTail pointers.PrevHead will point at the last object
returned from the queue, $eevHead.next will point to the head
of the queue. Here are the basic class definitions, undes#usrg-
tion that only one thread accesses the queue at a time.

// Holding cell for an entry
class QueueEntry {

QueueEntry next = null;

Object stored;

int taken = 0;

QueueEntry(Object newobject) { stored = newobject; }
}

// The actual Queue (not yet lock-free!)
class Queue {
QueueEntry prevHead = new QueueEntry(null);
QueueEntry tail = prevHead;
void Enqueue(Object newobject) {
QueueEntry newEntry = new QueueEntry(newobject);
tail.next = newEntry;
tail = newEntry;
}
Object Dequeue() {
QueueEntry nextEntry = prevHead.next;
while (nextEntry != null && nextEntry.taken
nextEntry = nextEntry.next;
if (nextEntry == null)
return null;
else {
nextEntry.taken = 1;
prevHead = nextEntry;
return nextEntry.stored;

1

Y}

Suppose that we have an atomic swap instruction that takes a
local variable (register) and a memory location and swapg th
contents. In a relaxed dialect of Java that allows pointiérsan
be described as follows.

Object AtomicSwap(variable addr, Object newValue) {
Object result «xaddr; // Get old value (object)
+addr = newValue; // Store new object
return result; // Return old contents

3

Problem (a). Using theAtomicSwap() operation, rewrite code for
Enqueue() such that it will work for any number of simultaneous
Enqueue andDequeue operations. You should never need to busy
wait. Do not use lockingd.g, test-and-set lock). Although tricky,
it can be done in a few lines.

Problem (b). Rewrite code fomequeue() such that it will work
for any number of simultaneous threads working at once. #gai
do not use locking. You should never need to busy-vidit.

This problem gives away more about the final solution than
sketching typically requires, yet it is interesting enotigflustrate
ow sketching is helpful. The following development reftetite
actual sketching process by a co-author who had not prdyious
seen the solution to this problem.

Let us first consider how the programmer might sketch the
concurrentEnqueue operation. First, the programmer speculates
that, in addition to the initialization of a new entry, the tihmed will
consist of one or more of following statements:

locatioa value
tmp = AtomicSwap(location, value)

assignment
swap

The next step is to come up with locations and values thatdhe ¢
currentEnqueue may need to reference. The programmer guesses
that these sets are sufficient overestimates:

location
value

{tail, tail.next, newEntry.next, tmp.next}
locatior {tmp, newEntry, null}

Next, the programmer realizes an important implication loé t
AtomicSwap semantics. Unlike CAS, whose typical use is to update
the data structure only when a race condition has not oaturre
AtomicSwap modifies the location unconditionally. Therefore, if the
swap fails, some corrective action may be necessary.

The programmer of course does not know what it means for
the swap to fail, or whether it can fail at all, because he duds
know the solution. He can, however, state his observaticadojng

www.manaraa.com

#define alocation {| tail(.next)? | (tmp|newEntry).next |}
#define aValue {| (tail|tmp|newEntry)(.next)? | null |}
#define anExpr(x,vy) {| x==v | x!=y | false |}

void Enqueue(Object newobject) {
QueueEntry tmp = null;
QueueEntry newEntry = new QueueEntry(newobject);

reorder {
alocation = aValue;
tmp = AtomicSwap(alocation, aValue);
if (anExpr(tmp, aValue)) alLocation
}
}

aValue;

Figure 1. A sketch for the concurrerthqueue.

a fixup statement to the set of statements that may comprése th
concurrentnqueue.

fixup if (expr(tmp, value)) assignment
expr(x.y) x=yl|x I=y

At this point, the programmer believes to have listed a sgiesf
the statements that the concurremfueue might need. He does not
know how to assemble these statements into a working melbiod,
he can already express arformal sketchof the desirednqueue
method:

The concurrentnqueue method will execute—irsome se-
quential order—(i) an assignment, (ii) a swap, and (iii) an
optional fixup statement.

This is the extent of the reasoning that needs to be carriéd ou
about the concurrerttnqueue, and the resulting informal sketch
is all that the synthesizer needs to know to perform the sgish
We are now ready to write the sketch in thedESCcH language.
The sketchedinqueue is shown in Figure 1. Since it closely cor-
responds to the informal sketch, little explanation is ideor First,
note that macro definitions behave as in C. Second, theeP&H
expressior{|ei |ez2]. . .|} asks the synthesizer to select one of the
e; expressions, which can be given as regular expressionsd, Thi
the reorder construct specifies that the statements in its body can
appear in any order in the final implementation. Finally,enttat

the programmer included among the choicesaftixpr the false
expression; this makes the fixup statement optional.

The value of the sketch for the programmer is highlighted by
the fact that the sketchekhqueue represents 1,975,680 unique
candidate programs. Since the synthesizer will selectr@coone
from among them, the programmer can now think in terms of
coming up with a set of ingredients rather than how to orchést
them. It remains to specify the correctness condition, sob tte
synthesizer can select a correct candidate. We discussHhisust
done in Section 4, but here it suffices to say that the progrimm
specified conditions require that the concurrenfueue obeys the
same structural properties as the sequential counterpairinas
given in the problem statement, and is sequentially cosrsist

The resolution of the sketch in Figure 1 by the synthesizer
produces the concurrelhqueue method in Figure 2. The fixup
statement was optimized away because it was unnecessary (th
synthesizer replaceghExp with false).

The sketch for the concurrebéqueue is shown in Figure 3. In
this operation, the programmer easily realized that thenrtrigk
is to test thetaken field with atomicSwap, so this aspect was not
sketched. The tricky part was to come up with correct codé tha
can advance thgreviead pointer as far as possible, for improved

void Enqueue(Object newobject) {
QueueEntry tmp = null;
QueueEntry newEntry = new QueueEntry(newobject);

tmp = AtomicSwap(tail, newEntry);
tmp.next newEntry;

Figure 2. The sketch from Figure 1, resolved.

Object Dequeue() {
QueueEntry nextEntry = prevHead.next;
while (nextEntry!=null &&
AtomicSwap(nextEntry.taken,1)==1)
nextEntry = nextEntry.next;
if (nextEntry == null)
return null;
else {
QueueEntry p = {| prevHead | nextEntry |};
while (p != NULL && {| p(.next)?.taken [}) {
prevHead = p;
p = p.next;
}
return nextEntry.stored;

}ri

Figure 3. A sketch for the concurremiequeue.

Object Dequeue() {
QueueEntry nextEntry = prevHead.next;
while (nextEntry!=null &&
atomicSwap(nextEntry.taken, 1)==1)
nextEntry = nextEntry.next;
if (nextEntry == null)
return null;
else {
QueueEntry p = prevHead;
while (p != NULL && p.taken) {
prevHead = p;
p = p.next
}
return nextEntry.stored;

}ri

Figure 4. The sketch from Figure 3, resolved.

performance. This loop was sketched. In it, there is a chofce
where to start the iteration (there were only two plausilbleices)
and a choice where to end the loop (again, only two choicds). T
sketch forDequeue in Figure 3 represents only 4 programs, but
together with theEnqueue sketch, the programmer has encoded
over five million candidate implementations. Section 8 déss

a sketch forbequeue that corresponds to more candidates; that
sketch seeks to synthesize a program that updatesrthéiead
pointer during the first loop. Such Bequeue has incomparable
performance with that in Figure 4 (depending on the work| s

or the other may be preferred). These two sketches give linge t
sketches may be used to quickly develop alternative alyost

www.manaraa.com

3. The SKETCH Language

To give necessary background for the sections that folloa, w
summarize here the K&TCH language introduced in [21]. This
language supports sketching-based synthesis by exteadingple
imperative language with a single synthesis operator onofop
which higher-level and domain-specific synthesis consiroan be
added as mere syntactic sugar.

With the SKETCH language, the programmer first writes a clean,
behavioral specification for an algorithm, and then he $let@n
outline of an efficient implementation. We have observed tiia
outline, called a sketch, captures the programmer’s insgbut
the implementation while allowing the programmer to leadidus
details unspecified.

Let us illustrate programming withkETcH using a small pro-
gram submitted to a&TCH programming contest that we orga-
nized in the past year. The contestant useé¢ & H to implement
a problem that he had previously solved by hand; this mamaal p
cess took half a day. As we will see shortly, sketching theesam
implementation is much easier.

The problem at hand is to computetax 4 matrix transpose.
The specification is given in the functiarans. (Note thattrans
is an executable specification, not a declarative one, andegcan
debug it easily with standard debugging techniques.)

int[16] trans(int[16] M) {
int[16] T = 0;
for (int i = 0; 1 < 4; i++)

for (int j = 0; j < 4; j++)
T[4 i + j] =M[4 = j + i];
return T;
}

While optimizing the transpose, the student realized that i
might be possible to parallelize the transpose with a SINMHIrirc-
tion calledshufps. This instruction accepts two 4-word arrays and
semi-permutes each into a 2-word array; the semi-pernoatati
are given by a third argument. The following<STcH function
emulates the semantics eéifufps in the XETCH language.The in-
dexing notatiora[b: : c] translates to a sub-array eotells of array
a starting at index.

int[4] shufps(int[4] x1, int[4] x2, bit[8] b) {

int[4] s;
s[0] = x1[(dint) b[0::2]]; s[1l] = x1[(int) b[2::2]];
s[2] = x2[(dnt) b[4::2]]; s[3] = x2[(int) b[6::2]];
return s;

}

The student’s insight was that shufps-based transpose had
to proceed in two stages: The input matrix had to be permuted
into an intermediate matrix, which would then be permuted in
the resulting (transposed) matrix. It was not immediatdlyious,
however, how exactly the two stages were to proceed.

The sketchtrans_sse shown below expresses the student’s in-
sight. First, we need to introduce the sketch constructierlan-
guage. Theimplements directive in the function header tells the
synthesizer to resolve the sketehans_sse such that it is behav-
iorally equivalent totrans, i.e,, the two must compute the same
function. The?? operators, called thprimitive hole will be re-
placed by the synthesizer with suitable constants to gatisf
behavioral equivalence. Finally, thepeat(n) s construct is a
synthesis-time macro thattimes replicates. The replication cre-
ates fresh holes, each of may be replaced with a differerstanh

int[16] trans_sse(int[16] M) implements trans {
int[16] S =0, T = 0;
repeat (??) S[??::4]

shufps(M[??::4], M[??::4], ?7);

repeat (??) T[?7::4]
return T;

}

shufps(S[??7::4], S[??7::4], ??7);

The sketch concisely expresses the insight. Notice thatrire
grammer fixed the two permutation stages but he left unspdcifi
(1) the number o$hufps instructions necessary for the task, (2) the
ranges of matrix cells to be permuted, and (3) the bit vectivest-
ing the permutations. The above sketch resolves in 33 nsrute
a1.G GHz Core 2 laptop. The synthesizedns_sse is shown be-
low. (The binary strings are initializers for the bit-arsayand are
read left-to-right):

S[4::4] = shufps(M[6::4], M[2::4], "11001000");
S[0::4] = shufps(M[11::4], M[6::4], "10010110");
S[12::4] = shufps(M[0::4], M[2::4], "10001101");
S[8::4] = shufps(M[8::4], M[12::4], "11010111");
T[4::4] = shufps(S[11::4], S[1::4], "10111100");
T[12::4] = shufps(S[3::4], S[8::4], "11000011");
T[8::4] = shufps(S[4::4], S[9::4], "11100010");
T[0::4] = shufps(S[12::4], S[0::4], "10110100");

4. The Concurrent PSketch Language

The PXETCH language extends thek8TCH language introduced
in [20] in two important directions. First, it provides highlevel
sketching constructs with which programmers can moreeasil
press their insights. Second, it introduces threads anchsgniza-
tion primitives.

Concurrency introduces nondeterminism, which precluties t
SKETCH approach of specifying a sketch’'s behavior by a reference
implementation to which a resolved sketch must be functipna
equivalent. At the end of this section, we describe how cbrre
behavior is specified in BR&TCH.

4.1 High-level sketching constructs

The sequential SETCH language extends its imperative base with
a single synthesis construct: the primitive “hole” express??,
which the synthesizer replaces with a constant that makes th
sketch satisfy its specification. Prior work found the ptine
hole sufficient for synthesizing expressions (r-valuesdhsas loop
bounds and index expressions in matrix manipulations. [20]

When sketching concurrent data structures, we found a eed t
synthesize (1) left-hand-side expressions (I-values)andontrol
flow, such as the order in which statements execute. To teili
sketching of these constructs, PErcH introduces two features
(i) regular-expression expression generators, (ije@der block.

As we will show in section Section 7, these constructs can be
implemented as syntactic sugar on top of the baziexpression.

Regular-expression expression generatorfRegular-expression
generators (hereafter ERgenerators) allow the programmer to
sketch both r-value and I-value expressions from a restfictgular
grammar.

The Re-generator construct has the formne|3, wheree is a
regular expression literal. The semantics of the constiguthat
the synthesizer substitutes the syntactic occurrenceeafdhstruct
with a string fromL(e) such that the substitution makes the sketch
satisfy its specification. Rgenerator are not simply expanded
as a macro, however; for programmability, we require thahea
component regular expressierbe well typed.

RE-generators are typically used to enumerate symbolic mem-
ory locations or values that the synthesized code can refere
For example, the following P& TcH fragment shows how we
sketched the use of eompare-and-swap (CAS)struction in a
doubly-linked data structure.

www.manaraa.com

#define NODE {| (tprev]|cur|prev)(.next)? |}
#define COMP {| (!)? ((null|cur|prev)(.next)? ==
(null|cur|prev)(.next)?) |}
while(cur.key < key){
Node tprev = prev;
reorder {
if (COMP) { lock (NODE); }
if (COMP) { unlock (NODE); }
prev = cur;
cur = cur.next;
}
}

Figure 5. A sketch of hand-over-hand locking.

while(cur.key < key){
if (prev !'= null)
unlock (prev);
lock (cur.next);
prev = cur;
cur = cur.next;

Figure 6. The sketch from Figure 5, resolved.

CAS({| head(.next|.prev)? |},
{| newNode(.next|.prev)? |},
{| newNode(.next|.prev)? |})

The first CAS argument selects the location to be modified tfaad
second and third arguments give the old and new values, aespe
tively. When writing the sketch, the programmer suspectedn-
sisted) that a CAS had to be used in the synthesized codeg blid h
not know which location had to be updated, and with what \&alue
With the sketch below, he effectively specified all 27 CASgfra
ments that made sense in the context of the list additionatiper
(accessing other locations does not make sense in thistimpgra

RE-generators support only two regular expression operators
e1 ez and optional expressions.

At first sight, the exclusion of Kleene closure might seem ar-
bitrary, but keep in mind that Rgenerators are used to generate
bounded program text. In real code, it is unusual to find chain
of pointer dereferences of the forfip(.next)«|} with more
than two or three levels of dereferencing, so adding Kledae ¢
sure would increase the search space without any signifizant
grammability benefit.

Reorder block. Concurrent data structures often depend on
careful statement ordering to satisfy desired invaridfasthis rea-
son, we extended FK&TCH with a reorder construct that leaves
the synthesizer in charge of determining the correct ordetHe
statements in a block of code. The synthesizer considersoal
sible orders of these statements and selects one thathéogeith
other choices made by the synthesizer, turns the sketchaipto-
gram that meets the specification.

In Section 2, we showed a sketch that usedrder to let the
synthesizer decide where in a block of code to use an atonap.sw
In many other sketches, we have similarly usedriéerder block
to describe a “soup” of operations which, when ordered irritjte
sequence, can produce a correct program.

Another use ofeorder is to control mutual exclusion. For ex-
ample, one of our benchmarks implements a hand-over-hahe lo
ing scheme for adding and removing elements from a condisegn
represented as a sorted linked'list (See Section 8). As gfoeitim

struct Lock {

int owner = -1;
} unlock(Lock 1k) {
lock(Lock 1k) { assert lk.owner == pid;
atomic(lk.owner == -1){ 1lk.owner = -1;
1k.owner = pid; }

}
3

Figure 7. Locks implemented with conditional atomics.

scans the list, it must acquire and release some locks totamain
a sliding window of locks around the pointers it is holdinhi§
scheme is tricky to get right, but we can use tleerder block to
give the synthesizer the freedom to discover the correategy
for acquiring and releasing the locks. The sketch is showFign
ure 5, and the synthesized code is shown in Figure 6. Note lhew t
synthesizer used the freedom to reorder statements tovdistite
correct strategy for acquiring and releasing the lotks.

4.2 Concurrency Primitives

The key novelty in P8ETCH is the support for synthesizing con-
current programs. To write these concurrent sketches, ghedad
three concurrency constructs in the ®EScH language. While
these three constructs are standard, supporting themreequs-
thinking our synthesis algorithm, which we discuss in Set8.

Threads. Threads are created with the construct
fork (int i, N) b which spawnsV threads and blocks until all
N threads terminate. Each thread executes the statebndiite
index variablei contains a unique id for each thread, franto
N — 1. All variables declared insidg are thread-local. All other
variables, together with the heap, are shared.

Our current system only supports programs with a sifgigk
statement, optionally preceded by a sequential prologaefan
lowed by a sequential epilogue. However, this limitatiomas in-
herent to the method; it is only a matter of engineering temott
the system to support multiple, nestestk statements.

Atomic Sections. An atomic section is a block of code that
is guaranteed to execute without interference from otheatits.
Atomic sections can be used to model the atomic primitivesh sis
compare-and-swap or read-and-increment, available ortiaydar
architecture.

Synchronization. PXETCH translates all synchronization
primitives into conditional atomic sections [13]. A coridital
atomic is an atomic section that blocks until its conditiarids.
For example, lock and unlock primitives can be implemented i
terms of conditional atomics as shown in Figure 7.

It is worth noting that P8ETCH does not support spin-locks,
so they must be modeled with conditional atomics. We disthiss
limitation in more general terms in Section 6.

4.3 Specifications in PRETCH

In SKETCH, a sketch is synthesized into a program that complies
with a separately provided behavioral specification, wigdiound

to the sketch with theémplements keyword. The synthesizer either
outputs a program is functionally equivalent to the spesifan (in
terms of observable outputs) or reports that the sketchatdvm
resolved (.e., cannot be completed to behave like the specification).

1PsXETCH does not necessarily resolveorder so that it minimizes mu-
tual exclussion. If optimality is desired, we believe thasthgay to achieve
it is to synthesize many correct candidates and select tsieobe by mea-
suring the performance of each, as is done in autotuningsfél, the pro-

grammer can use assert statements to constrain solutiongytthose with

mutexes that are.g, separated by at most two statements.

www.manaraa.com

This mode of specification is still supported in S cH, but it
is useful only for those parallel sketches for which one eipde-
terministic behavior. The final state of concurrent datacttres
typically depends on the nondeterministic interleavingopéra-
tions in concurrent threads, so a specification defined hytiapt-
put equivalence is less useful.

P S ETCHallows the programmer to specify desired correctness

conditions usingssert statements. The semantics of S CHis
that the synthesized program must (1) behave like the spaiiifin
bound with theimplements clause; and (2) be free of assertion fail-
ures on all inputs and all thread interleavings. These isaeralso
include implicit ones added by the synthesizer to guarames-
ory safety and freedom from deadlock. The programmer-fipdci
correctness criteria are typically checked in the epilo@eztion 8
describes how we used assertions to define correctnessfierao
the benchmarks we evaluated.

5. Synthesis for Sequential Sketches

The XETCH synthesizer solved sequential sketches using a
counterexample-guided synthesis algorithm. The algoritfas in-
troduced in [20], where it was presented as a solver for tbbe-pr
lem of 2-quantifier Quantified Boolean Satisfiability spézed
for synthesis of sketches. We have recently found a deepecenn
tion between the original algorithm and inductive programtke-
sis [4]. This section describes the original algorithm fribis more
general perspective as counterexample-guided indugfivthesis
(CEGIS), and highlights the connection to program verifarat
The algorithm is described on a reduced subset of the laeghag
is limited to basic control flow and integer holes. Sectiox@rds
this algorithm to handle concurrent sketches that use tiondl
atomic sections as the only synchronization primitive.t®eac7
describes how the remaining language features are imptechan
terms of these basic constructs.

5.1 The Counterexample-Driven Inductive Synthesis

A sketch with only integer holes can be understood as a paraed
programSk[c], wherec is acontrol vector containing the values
for all the integer holes in the program. For a given inputve
can represent the correctness requirements for candiéigtpas a
predicateP(z, ¢) onz andc. Thus, the sequential sketch synthesis
problem reduces to finding a control vector satisfying thiefdng
equation.

Jdc.Vz.P(x,c) (5.1)

The two-quantifier alternation makes this problem very clifi,
but the CEGIS algorithm solves it by using the principle afun-
tive synthesis.

The problem of inductive synthesis is to generate a caralidat
implementation that is consistent with a set of observatiamout
the behavior of the program on a given set of inputs. For sale
sketch synthesis, our observations consist of a set of snput
together with the observation that the candidgt¢c] must satisfy
the correctness criteria on these inputs. Therefore, w&anare the
inductive synthesis problem as follows.

deVz € E.P(z,c) (5.2)

Given a boolean representation of the predidatd&quation (5.2)
can be expanded and supplied to a SAT solver directly sinee th
universal quantification over the small gétcan be expressed as a
simple conjunction.

On its own, however, an inductive synthesizer is unable &-gu
antee the correctness of the candidate solution. The ssinétean
only guarantee that the resulting implementation will rhatice
given observations. As more observations are added, théings
implementations are expected to converge to a correct imiéa-

candidate control

sat

add counterexample input

Figure 8. Counterexample driven synthesis algo.

tion, but the inductive synthesizer is unable to detect eqgyence
on its own.

To address this problem, CEGIS couples the inductive synthe
sizer with a verification procedure. The verifier serves twoct
tions: it rejects incorrect candidates until convergersceeached,
and it produces observations to drive the inductive syizbesThe
verifier is very good at producing observations becauseydirae
a candidate fails, the counterexample that proves thaéagguar-
anteed to cover a corner case not covered by any previousvabse
tions. The complete algorithm is illustrated in Figure 8sltvorth
noting that the CEGIS algorithm places very few requirermamt
the verification procedure; any verification procedure bépaf
producing concrete counterexamples can be incorporatedhe
algorithm.

The power of the CEGIS algorithm was demonstrated empiri-
cally in [20]; for example, in one reported experiment, tketsh
solver synthesized a sketch of AES by analyzing @iy inputs
from space 0f2255 possible inputs. This demonstrated both the
power of the inductive synthesis approach, and the highitgual
the observations produced by the verifier.

The challenge of concurrent synthesis is to extend thigihgo
for the case when the observations are no longer just inputs,
traces showing how specific thread interleavings in a catelid
solution lead to property violations.

6. Synthesis for Concurrent Sketches

This section develops a concurrency-aware synthesizerppoost
the concurrency extensions to th&«EcH language. The con-
current synthesizer exploits the benefits of inductive lsgsis ob-
served in the sequential setting. In that setting, synshiesim ob-
servations allowed us to ignore all but a few counterexample
puts, which turned the 2QBF synthesis problem into a seguenc
of SAT problems. Here, we show that a correct candidate can be
computed by considering only a few counterexample thregat-in
leavings, sidestepping the need to reason about all pedsitdad
interleavings during synthesis. We implemented the allgarion
top of the existing 8eTcH infrastructure, using SPIN as our veri-
fication engine with very positive results.

The algorithm follows counterexample-guided inductive-sy
thesis:

e The inductive synthesizer evaluates each candidate on a set
of observations. Each observation is a fixed thread schedule
As a result, the inductive synthesizer evaluates each dateli
only on traces induced by the observations, ignoring aleoth
interleavings. Traces have sequential semantics, sowatigeTs
reduce the concurrent synthesis problem into a sequemiéal o

e The verifier is standard in that it considers all thread intar-
ings in the provided candidate. If the candidate is bad, #gre v
ifier generates a counterexample trace that withesses ke as
tion violation. Counterexample traces are then used aswbse
tions.

www.manaraa.com

The algorithm can accommodate any verifier as long as it pro-
duces a bounded counterexample. The correctness guaraftee
the system will be those which the verifier can decide. Howeve
the inductive synthesizer can only eliminate candidatesdan
violation of safety properties on a trace. Therefore, waiirecthat
any liveness properties be approximated as safety prepemtiich
must hold after a bounded number of steps. For example, the sy
thesizer enforces termination by requiring that candilgeminate
after a bounded number of steps for the bounded inputs itdenss

The algorithm outlined above is relatively straightfordiafhe
challenge is how to turn a trace into a valid observationt itha
how to make it applicable to all candidates. Compared tots)pu
which act as observations in the sequential setting, trdoesot
lend themselves directly to that role: while a counterexanmput
produced on one candidate is applicable to other candidatesce
is specific to a candidate and thus incompatible with othéfes.
could, of course, arbitrarily project a trace onto anotterdidate,
but we wangoodobservations. An observation is good if it prunes
away many bad candidates, by exposing their violationsceSan
trace exposes an (unidentified) problem detected in a catediny
a verifier, it is desirable that projected trace retains thiéity to
expose this problem in candidates that share the problem.

Two issues complicate projection of traces onto other eandi
dates.

1. Projection onto candidate spac®/e cannot afford to project
traces individually for each candidate, as there are tooyman
candidates. Instead, we need to transform the sketch sa that
given counterexample trace is projected simultaneousty alh
candidates in the candidate space.

. Preservation of errorsWe know that a counterexample trace
exposes an error in a candidate, but we do not know what
aspects of the trace caused the error. Hence, projectiorotan
aim to preserve a specific fragment of a trace. Instead, dsee

Wherefail(Sk:[c]) is a boolean function of computed symboli-
cally for each individual trace ifi.. Note thatSk.[c] is a sequential
trace, so this is the same inductive synthesis problem dwise-
quential setting.

To explain howSk.[c] is computed symbolically fronsk and
t, we need to return to the second question—how to preseroeserr
exposed by a trace. To simplify the presentation, let usrassu
that the sketch is acyclic, which implies that all candidatee
acyclic. This is not a serious simplification because ouuatige
synthesizer explores executions of bounded length. Theliacy
restriction is will simplify the explanation because eatdtesment
is executed at most once.

When projecting traces, our goal is to ensure that, whenever
possible, the projected trace preserves the error exposdéidei
original trace. An error is that aspect of a candidate progtiaat
was responsible for an assertion violation: it could be matugh
synchronization causing a race condition, or too much aftising
a deadlock, or any other “bug” allowed by the sketch. An eisor
an inherently vague concept, so rather than defining it thirese
define preservation of errors in terms of maximally presenthe
ordering of steps in the original trace. A step is a fdairi), of a
statement and the thread which executed it.

We say that a trac€ preservesa tracet if all steps common
to t' andt are executed in the same order in both traces;if
s1 precedess; in ¢, and boths; and s, are present irt’, thens;
precedes: int'.

This notion of preservation is practically relevant if prasng
step ordering indeed preserves the conditions that lead &orar.
This is to be expected if preserving the order also helpsepves
the dataflow relationship that led to the error in the firstéra=or
example, if data flowing from; caused an assertion failuredgin
a candidate;, then if a trace for candidate preserves this error-
causing dataflow, the trace should serve to eliminate catelid.
Preserving the order does not necessarily mean the dataflow w

to preserve as much as possible under some notion of “error in be preserved. For example, it is possible that executingefore

the candidate.”

Let us now address the first problem, starting from first princ
ples. To turn a trace into an observation, we need to projeece
t., produced on a candidate programonto a trace., valid on a
candidate:z. We denote the projection of, ontocz with ¢, > co,
or t > ¢ when the origin oft is clear from the context. We define

s2 exposed an error in; but it does not inc2, because something
in the programe, executed between these two steps and masked
the error. However, step-ordering preservation is simpkenforce
and we hypothesize that it preserves many errors. Pregeovin
dering of statements worked well for the errors that we miyua
examined.

Therefore, in general, we waist:[c] to be apreservingpro-

tc, > c2 to be a single trace, rather than a set of traces. (The latter jection oft. However, it is not always possible to find a preserving

would enable preservation of more errors presertt.jn but this
would come at the cost of growing the size of the observatir) s
The goal is to be able to use a §&tof counterexample traces to
find a plausible candidate A candidate iplausibleiff tracet > ¢
does not fall, for all traces € T'. A trace is considered tfail when
it encounters an assertion violation or a deadlock. Thieimted
with a predicatéefail(t). Thus, we want to search for a candidate
to satisfy the following equation.

Yt € Te . ~fail(t > c)

projection of a trace into another candidate program, afottwev-
ing example illustrates.

bool ¢ = ?7;
thrdl: { sa; if (c) wait; sl; if (!c) signal }
thrd2: { sb; if (!c) wait; s2; if (c) signal }
This sketch corresponds to two candidate programs, sdlbased
on the value ot:
ct: thrdl: { sa; wait; sl; } thrd2: { sb; s2; signal; }
cyg: thrdl: { sa; sl; signal; } thrd2: { sb; wait; s2; }

In order to make the search efficient, we need to produce a a||traces fore, executes, befores;. However, none of these traces

boolean encoding of the problem above, similar to what igluse
in sequential synthesis [20]. The first step, is to encodesfiaee
of candidate programs as a functistk|c] parametrized by a bit-
vectore, so different values of makeSk a different candidate.

The second step is to create a new functin|c] such that

Skq[c] = t> Sk[c]

Sk¢[c] is therefore a projection of tradeon the candidatek[c].
With this encoding, the SAT solver is now left to solve thelpemn

Vt € Te . ~fail(Sk:[c])

can be projected ontey in a preserving manner because all traces
for ¢y executes; beforess.

In these situations where a preserving projection is naiples
we require thak:[c] be a preserving projection of the longest pre-
fix of ¢ for which such a projection is possible. For example, if the
tracet, for ¢, is (2, sb),(1, sa),(2, s2),(2, signal),(1, wait),(1, s1),
then the encoder can not produce a complete preservingcpooje
intocy. Thus,Sk¢, [0] = (2, sb), (1, sa), a projection of the longest
prefix of t; for which a preserving projection is possible.

The algorithm that produce$k. [c] from Sk andt is relatively
simple. As a first step, it performs if-conversion [1] on thketsh

www.manaraa.com

Sk to turn itinto a sequence of predicated atomic statemeitte(e
atomic blocks, or simple assignments). An interesting ergp
of this representation is that any candidate implementatio[c]|
derived from the sketch will contain a subset of the statémen
present inSk.

except that each statement in teeitch block is a choice of
assignments from to s;.

7.2 Reorder Statement

A reorder block with a setS of k statementssy, ..., sx—1 rep-

In the second step, the algorithm produces a version of the resentsk! possible candidate programs; so the synthesizer needs

sketchSk® for each thread in the trace. The!” statement of%?,
st is derived from then*" statement ofSk by renaming all local
variables to have thread-unique names. This guaranteektah
variables will behave as expected when we interleave stattsm
from different threads.

The next step is to interleave the sequences of statements co
responding to the different threads into a single sequehseate-
ments. To do this, the algorithm sorts all the statemefitaccord-
ing to the partial order imposed by both the thread and theeseq
tial threading; namely: (i) If steffs;, n) precedeqs;, m) in the
trace, thers’, < si,. (i) If i = jAn < mthenst, < s, (iii) If the
tracet exposes a deadlock involving a set of stéps= (s;,m).. .,
then if s?,',b_corresponds to a step in the deadlock set, gpdoes
not, thens;, < s7,.

The last constraint is there for technical reasons, to ntadask
ier for us to both do deadlock detection and rule out suffifes o
traces which can not be made into a preserving projectioa.fifh
nal step in producingk: is to take the sequence of guarded state-
ments form the previous step, and replace all conditiorahats
atomic(c) s with a conditional like the one shown below.

if(c)

S;

else
if(some other thread can make progress)
return O0K;
else
assert 0 : ‘‘deadlock’’;

The resulting encodingk: represents the preserving projec-
tion of the tracel onto all the candidates in the space. Moreover,
fail(Sk¢[c]) can be represented as a boolean function, afhich
allows us to solve the inductive synthesis problem effityentth
a SAT solver. Section 8 will describe our empirical evaloatof
the method, but before that, we must describe how the syintéres
handles the high-level sketching constructs.

7. Translating Sketching Constructs

In the last two sections, we described how the synthesizer co
pletes sketches containing only integer holes. In thisi@ectve
describe how the new high-level sketching constructs apeim
mented by showing their translation to simple code fragseuith
integer holes.

7.1 Regular Expression Generators

The translation of R-generators depends on whether the- R
generator is an |-value or r-value. In both cases, we will thhge
following terminology. Assume that theeRgeneraton- describes
a setS(r) of k syntactically valid strings, denoted, . . ., sk.

Translating an r-value Rgenerator is straightforward. This
translation requireks k bits of primitive holes.

translateRvalueGen (r) =
switch (??) {
case 1: return si;

case k: return si;
}

The translation of an |-value IRgenerator that appears in the
statement=¢ is"much'like the r-value B-generator translation,

to encode this exponential space of possibilities in a mase
amount of PBETCH code. The P&ETCH synthesizer actually
contains two different encodings for the reorder block heatth
different tradeoffs of space and complexity.

Our first, quadratic, encoding is shown below. It uéds &
control bits and, after unrolling theor loop, will have k copies
of each statement in the block, for a totaligt

translateReorder (S) =
int[k] order = ??F
assert noDuplicates in order
for (i=0 to k—1)
switch (order[i]) {
case 1: S
case k: Si
}

Notice that the assert forces the synthesizer to considgisen
mantically legal values of the arrayder (permutations of . . . k),
which is initialized withk primitive holes.

The second encoding actually requires exponential spate, b
for many sketches, it has proven to be significantly moreieffic
than the quadratic one. The basic idea is as follows. Suppase
we start with a list ofn statementsy;. . .; s;m—1, and we want to
insert a statement,, somewhere in the list. We can encode this
easily in 2*m+1 statements.

i=77;
if(i=0){ sm;} so;
if(i=1) {sm;} s1;

1f(1=m_1){ Sm ;} Sm—1;
if(i=m) sm;

We can apply this construction recursively to build a repnéa-
tion of thereorder. To do this, we start wittsg, and we use the
construction above to add before or after it. Then, we repeat the
process to inser; into the resulting sequence; the same process is
repeated to insert each subsequent statement. The rgsfire-
sentation will have® copies ofs;, and will require on the order of
n? control bits.

Surprisingly, for many benchmarks this encoding is muckebet
than the quadratic one, both in terms of spaad size. There are
several reasons for this. First, in most of our benchmahesntim-
ber of statements in the reorder blocks are relatively srividre-
over, our reorder blocks often contain statements of draidif-
ferent sizes; blocks with only a couple of very expensiviestents
can be encoded more efficiently with the exponential enagpdior
example, if a reorder block has two expensive statementshaed
inexpensive ones, the quadratic encoding will require Ji&egive
statements and 15 cheap ones. With the exponential encading
can encode this block with 3 expensive statements and 2&§chea
ones, as long as we add them in the right order. Thus, if therexp
sive statements are more than twice as expensive as theahesp
the exponential encoding will be more efficient.

8. Evaluation

This section presents our evaluation of the desugaringeoPt8-
KETCH language shown above, the new HESCH language in-
troduced in Section 4, and our CEGIS algorithm from Section 6

www.manaraa.com

Specifically, we evaluate the performance of ourkB8cH com-

piler and the expressiveness of thede$CH language on a suite of
benchmarks. The benchmarks were chosen because they are con
plex to implement, due to subtle issues caused by concytrénge
performance results are encouraging:

e PSKETCH successfully searched spaces of abiait syntacti-

cally unique candidates in under an hour, consuming less tha
500 MiB of memory.

e Our CEGIS algorithm required only a few observations (mean-

Sketch Description [C]
queueEl Lock-free queue: restrictethqueue () 4
1 queueE2 Lock-free queue, fultnqueue () 106
queueDE1 queueEl, plus sketche@equeue() 103
queueDE2 queueE2, plus sketche@equeue() 108
barrierl Sense-reversing barrier, restricted 10%
barrier2 Sense-reversing barrier, full 107
finesetl Fine-locked list, restrictedind() method 10%
fineset2 Fine-locked list, fullfind() 107
lazyset Lazy list, singly-lockedremove () 103
dinphilo Approximation of dining philosophers problem 10°

ing only a few calls to the verifier) to resolve a sketch, or de-

termine that it could not be resolved. In our benchmarks, PS- Table 1. Summary of benchmark sketches.is the set of candi-

KETCH required 10 iterations to find a correct implementation
from a space of abou® possibilities. PRETCHwas also able

to show after only 7 observations that one of our benchmark
sketches could not be resolved.

The expressiveness of the R cH language is harder to eval-

date programs encoded by each sketch.

For this benchmark, we also analyzed the complexity of resol
ing a problem where multiple methods had been sketched. The

Dequeue() sketch from Section 1 had too few holes to serve this

uate, but we show example sketches of our benchmarks beldw an PUrpose. Instead, one of us decided to try implementigeue ()

argue that they capture the insight behind a solution, withira
imum of unnecessary detail. For example, we were able telsket
and synthesize a previously-unknown-tob#gueue () method of

a lock-free queue. These results indicate that parallgraromers
might find PXETCH useful.

We begin this section by introducing our hypotheses abaut th
PXETCH system. Next, we present the benchmarks we used to
teste these hypotheses, showing some of our example skethe
then report P8ETCH's performance across our test suite, and dis-
cuss the results. Finally, we summarize the limitations m&an-
tered in the P8ETCH synthesizer.

8.1 Hypotheses

We wish to evaluate the following hypotheses.

Synthesis scales well with the size of the candidate program
space This scalability is the key to the sketching approach: i en
ables programmers to write sketches with less mundane desub
detail, leaving its completion to the synthesizer. We thgt hy-
pothesis by measuring the time for RSCH to resolve sketches
that encode increasingly large candidate spaces.

Our encoding of the observations made from failed candilate
captures useful information about the cause of failurais ap-
praises the projection strategy we use to encode informétoom
the traces in the inductive synthesizer. The number of obsens
required to resolve a sketch (or show that it cannot be reddlean
measure the strategy s effectiveness. Fewer observatioggest
that the encoding is capturing more useful information freach
trace.

The PXETCH language is expressive for this domaive do
not attempt to measure this quantitatively; instead, wevshow
we expressed the insights behind our benchmarks usinrg PSH.

8.2 Benchmarks

Our benchmarks are intended to represent various sketcloieg
narios across different problems. These sketches werechas
exemplars; we have sketched other data structures that ite om
here, including a doubly-linked list and full version of taey list-
based set described below. Table 8.2 summarizes the maitedet
descriptions of the benchmarks that follow.

8.2.1 Lock-free queue

The first version of this queugueueEl, contains a sketch of a re-
stricted version of th&nqueue () method discussed in Section 1. It
is restricted in that its candidate space is smaller thaRritpgeue O
sketch from Section 1. The second versigieueE2, has the full
Enqueue() sketch shown in Section 1.

with a single while loop. In a few minutes, he wrote the verysie
sketch shown below. The sketch simply places in a reordeklalth
the statements that one could reasonably expect to be negéss
the solution. The solution times for this experiments cepond to

the queueDE1 andqueueDE2 benchmarks.

Object Dequeue() {
QueueEntry tmp = null;
boolean taken = 1;
while (taken) {
reorder {
tmp = {| prevHead(.next)?(.next)? |};
if (tmp == null)
return null;
prevHead = {| (tmp|prevHead)(.next)? |};
if (!tmp.taken)
taken = AtomicSwap(tmp.taken, 1);

}
¥

return tmp.stored;

}
The queue benchmarks were resolved with respect to the con-

junction of the following correctness conditions:

e Sequential consisten¢¥5]. If a threadA enqueues; andas,
thena; must be dequeued before. Note that is a weaker
condition than linearizability [12].

e Structural integrity The queue is not corrupted by concurrent
operations. Specifically: (1) the head and tail are mdat1;
(2) prevHead.taken == 1; (3) the tail is reachable from the
head; (3) tail.next null; (4) there are no cycles in the
queue; (5) no “untaken” nodes precede “taken” ones.

P ETCH also enforces memory safety by default:mdl point-

ers may be deferenced, and array accesses must be withiddboun
It is worth noting that foqueueE2 andqueueDE2, we found that we

had to use more than one operation per thread or more than two
threads for verification in order to get solutions that galieed to
more threads and more operations per thread.

8.2.2 Sense-reversing barrier

Barriers allow multiple threads to synchronize at the sarogiam
point before continuing. They are difficult to implement focou-
ple of reasons. First, the last thread to reach the barrist realize
that it is last, then awaken the other, waiting threads. Setdoarri-
ers must prevent newly awoken threads from passing thraatgh |
barrier points.

www.manaraa.com

An insight to solving these problem is to separate conseeuti
barrier points into two phases, even and odd; the phaseledcal
the barrier’s “sense,” and reverses after each barriet fitdf The
barrier object keeps the global boolean sense, and eaddthes
a local sense. When a thread reaches a barrier point, it evtits
until its local sense matches the barrier sense, or if thehasad,
reverses the barrier sense, awakening the waiting threads.

However, this insight is far from an implementation. Therlear
code requires subtle reasoning about interleaved threwbimter-
mediate barrier states. We claim that thesR8cH language is well
suited to capturing the insight behind a sense-reversimiebaBe-
low, we sketch the barrier'sext () method. The sketch encodes
next() as a “soup” of operations, to be executed (or not) under
some conditions on the barrier state. The synthesizertisodiihd
an implementation that avoids harmful races, deadlocks otimer
intricate details.

We first write the fields of th@arrier: (1) sense, the current
phase; (2)senses, the local senses of each thread; and ¢8jnt,
the number of threads yet to reach the barrier. We define ting so
of operations comprising the insight behimekt () as follows:

1.

2.
3.

Update the thread’s own sense of the barrier.
Atomically decrement the count of threads yet to arrive.

Under some condition, wait until the barrier sense change
some predicate of the thread’s own sense.

4. Under some condition, set the barrier's sense and yatriee
count so as to wake up the other threads, and prepare therbarri

for the next shot.

Before finishing the sketch, we define “under some conditamna
P SETCH generator function that returns a boolean expression of
its arguments:

boolean predicate (a, b, ¢, d) {
return {| (!)? (a==b | (alb)==?? | ¢ | d) |};
}

Now, translating the operations above into a sketch isggitor-
ward. We make them into a “soup” by placing them irearder
block:

void next (Barrier b, Thread th) {

boolean s = b.senses[th];

s = predicate (0, 0, s, S);

int cv = 0;

boolean tmp = 0;

reorder {
// (1) Update t’s local sense
b.senses[th] = s;
// (2) Decr. count of yet-to-arrive threads
cv = AtomicReadAndDecr (b.count);
// (3) Wake up other threads, reset barrier
tmp = predicate (b.count, cv, s, tmp);

if (tmp) {
reorder {
b.count = N;
b.sense = predicate (b.count, cv, s, s);
}
}

// (4) Wait at barrier
tmp = predicate (b.count, cv, s, tmp);
if (tmp) {
boolean t = predicate (0, 0, s, S);
atomic (b.sense t);

3
3

}

The benchmarkarrier? is the sketch shown above. The com-
panionbarrierl is a reduced version with a smaller candidate pro-
gram space. The barrier’s correctness was established lgna c
program that ensured that threads always joined properdacit
barrier point, together with the implicit deadlock checkfpemed
by PSXETCH. This client program launche threads that reached
a barrierB times. Before waiting at th&"" invocation ofnext (),
each thread set a bitreached[t][b]. After passing through the
b call tonext (), each thread ensured that its left neighhdnad
also reached th&" barrier by assertingeached[t-1]1[b].

8.2.3 Finely locked, list-based set

This data structure implements tiset data type with a sorted,
singly linked list. In a highly concurrent setting, lockitige entire
list for eachadd(), remove(), andcontains() operation is unac-
ceptable. The insight behind the “finely locked” list is tointain
a sliding window of locks around the nodes being traversethdu
set operations, to allow concurrent modifications to digjaireas
of the list. Implementing this locking scheme, known as hawel-
hand-locking [11], is difficult; the programmer must ordkee tac-
quisition and release of locks while traversing the datacstire,
keeping in mind deadlocks and data structure corruptiomstdu
concurrent modifications.

For this list, we sketched a methéthd (key) that returngur,
the node with a least key greater than or equaktg andprev, the
node greatest key less thiey. The main loop of th&ind method
was described in Section 4; the sketch left the synthesizaedide
which nodes to lock and unlock and under what conditions, and
how to order these locking, unlocking, and traversal statgm It
is straightforward to implement the other data structurthogs us-
ing thisfind () helper. The benchmatkineset? is our full sketch,
and finesetl is a reduced version dfineset2. The correctness
criteria for these benchmarks were similar to those forgtheie
suite, with structural checks specific to this structure.

8.2.4 Singly-locked remove() method of lazy list

This is a problem proposed by [11]. Its basis is a lazily-upda
list-based set data structure due to [9]. Tda@() andremove()
methods of this set are optimistic, in that they traversedh&
structure without locking. Only when the list is to be modifigo
they check that the their view of the list is still valid. Badhd ()
andremove () acquire two locks before modifying the list.

This problem asks whether the listemove () method can be
modified to take only one lock, instead of two (the answer &'yn
We translated this problem into a sketch for kE$cH to solve
by first removing thelock statements from the originakmove ()
method. Next, we gave R&TCH the freedom tdlock any one
of a set of nodes at any point in the body of the stripped-down
remove(), and likewise fonlock. The correctness criteria for this
sketch were the same as for thimeset* benchmarks.

When we ran this benchmark with two threads performing both
add andremove, the synthesizer returned “NO”, as expected. Sur-
prisingly, PXETCHwWasactually able to find a solution that worked
for the case where one thread performs only adds and another
thread performs only removes.

8.2.5 Dining philosophers

This problem hasP philosophers at a circular table, with a plate
of spaghetti in the center. A philosopher needs two chdgstic
to eat. Each philosopher has chopsticks at his left and,rigktt
because the table is circular, there are oRlytotal chopsticks.
The problem is to find a chopstick-acquisition policy whisloias
deadlock, in which no philosopher can eat; and starvatiowhich

www.manaraa.com

particular philosophers cannot eat. Thus, we want a reequolicy
that satisfies the properties (1) some philosopher can aleat;
and (2) every philosopher will always eventually eat.

We modeled the problem in R&TcH as follows: there ard®
philosophers encoded asfark(int p; P) block, each contend-
ing for its left and right ofP locks. The philosophers attempt to eat
T times, blocking if they cannot acquire their left and righbp-
sticks. The resource acquisition policy was sketched axares-
sion oft, p, P, which indicated whether the right or left chopstick
should be acquired first. The order in which the chopstickeewe
released was also left unspecified. As to correctnesgEP&H
implicitly enforces property (1) above by ensuring that #xecu-
tion is deadlock free. As we described earlier, we can onfgrer
livenes properties by approximating them as a safety ptpprea
bounded execution. Our sketch approximates property (Jrby
suring that all philosophers are able to &atimes in theP = T
steps of the execution. With this sketch and this correstoeadi-
tions, the synthesizer was able to produce a correct impitatien
of the protocol; a minor variant over the standard soluti@spnted
in textbooks [16].

8.3 Performance

We tried to synthesize each benchmark for workloads witlouar
numbers of threads and operations, and patterns of opesatioen
possible. The particular tests of th@ue+, finesetx, andlazyset
benchmarks are labeled with the following scheme: a testedam
ed(ed|ed) means that first a sequential enqueueas performed ,
next a sequential dequedgand finally two threads were forked to
each perform an enqueue then dequéuBed). The set tests use
the same scheme, withandr standing for “add” and “remove”,
respectively. For each test, we gathered the following:data

¢ Resolvable- whether the sketch could be completed into a
correct implementation.

Iths— the number of observations required for CEGIS to termi-
nate.

® S.oives Vsorwe— fOr the synthesizer, the time for its SAT solver
to return SAT or UNSAT; for the verifier, the time for SPIN to
complete its search for a counterexample schedule.

® Simodel, Smodei— fOr the synthesizer, the time to build a boolean
satisfiability problem; for the verifier, the time to compéa
input model into a verification program.

Time:Total— total elapsed time between invoking S cH
and it returning an answer. This time does not eqtial,.+
Smodelt Vsolvet Smoder DECause part of the time is spent in
our compiler frontend.

Memory— the maximum memory used by the synthesizer, ver-
ifier, and P&ETCH. The maximum total memory includes
memory used by our Java frontend.

We tested PSETCH on a laptop with a 2 GHz Core 2 Duo
processor and 2 GB of RAM, running version 2.6.20-16 of the
Linux kernel. The results are tabulated in Figure 9.

The data in Figure 9 reveal a few interesting trends. Finsret
is an approximately linear correlation between Ibe of the size
of the candidate spad@ and number of iterations before finding
a solution, as observed in a sequential sketch synthe&i@gr\jve
have plottedog C' against number of iterations in Figure 10, for se-
lected tests. Second, neither synthesis nor verificatiearigl dom-
inated the total solution time across the test suite, thouegifi-
cation tended to be more expensive. Third, we see that fdr eac
benchmark, changing the number of threads or the methokisical
on each thread had a big effect on verification times, butregis
stayed fairly constant."A fourth trend is the large amountirok

Candidates Vs. Observations

2.3502x

1E+10 y=¢

e
=
m
+
Q
@
[]

1E+07 [] L]

100000
0

100000 o [)

10000

1000

100

10

1

Size of the candidate spac

0 2 4 6 8 10 12
Number of Observations

Figure 10. Candidates Vs. Observations

needed to generate and compile the SPIN verifiers, which-domi
nated the total time for several tests.

8.3.1 Limitations

P ETCH's most severe limitation is that it only guarantees cor-
rectness of synthesized programs with respect to safepepties,

up to a bounded number of executed instructions. Howevebewe
lieve that with future work, PSETCH can handle liveness prop-
erties. A second limitation is that R&TCH only returns a single
correct implementation of a sketch. In many contexts, orshes to
find all correct solutions, then search these for an optimal eng (
with autotuning [6]). The CEGIS algorithm can trivially ghoce
multiple correct candidates, but future research mighitiahclly
guide its search by optimality criteria.

PXETCH is also hampered by engineering limitations, mostly
due to the delicate connection between the SPIN verifier bed t
SAT synthesizer. As mentioned above, for some programs we sa
a large discrepancy between the time needed to verify thieneins
plified models emitted by P& TcH and hand-simplified versions
of the same models. Applying traditional compiler optintiaas
to these models was difficult, because they threatened &t thpes
correlation of counterexamples between SPIN and our sgizitie
Another practical problem was the large overhead of comgpili
SPIN verifiers, which were C programs with up to tens of thou-
sands of lines of code. Both problems are amenable to bettgr e
neering.

Synthesizing data structures that are correct with resfect
linearizability is a future goal. Our current CEGIS algbnit can
synthesize and verify data structures with respect to tinahility
criteria, but it is difficult to embed these criteria in skegs. We
believe that this problem can be solved with richer speditica in
the PXETCH language.

9. Related Work

In previous work we have proposed sketching as a methoddétwgy
developing efficient algorithms from a low-level outlinestkof.
This line of work proved useful for writing bit-streaming gor
grams [19] and was later extended to work for arbitrary finite
computations [20] and unbounded stencil computations. [L8§
sketching approach is related to earlier research in coimtfer-
ence, including foundational work on Prolog [14], as wele#erts
in the field of Al for determinizing an agent’s behavior viata-
ing techniques [3]. Alternatively, transformational dyesis frame-
works (.9, [8,17]) are largely domain-specific and apply sepa-
rately provided programmer insights through an interacsiynthe-
Sis process.

Synthesis of Concurrent Algorithms. While computer-aided
verification of concurrent programs has gained significanten-

www.manaraa.com

Time (s) Maximum Memory (MiB)

Test Resolvable Itns Total Ssolve S'nwdel Vsolve Vinodel Total Smem Vinem
queueEl ed(eeldd) yes 1 8.79 0.01 0.04 0.07 5.55 54.41 13.72 5.13
ed(ed|ed) yes 1 9.24 0.02 0.04 0.86 6.1 67.04 13.73 8.25
(elele)ddd yes 1 13 0.05 0.12 5.67 5.05 72.81 17.54 31.69
queueDEL ed(ee|dd) yes 4 46.97 2.63 4.76 0.32 31.95 135.51 54.7 6.69
ed(ed|ed) yes 4 64.18 5.27 7.98 7.09 33.76 172.92 66.73 2231
queueE2 ed(ed|ed) yes 5 114.7 16.22 9.93 5.32 71.98 171.69 69.31 17.63
(elele)ddd yes 8 249.2 44.74 233 104.59 60.98 213.69 92.64 114.69
queueDE2 ed(ed|ed) yes 10 3091.37 2676.07 147.07 16.28 184.72 489.26 313.2 330.1
barrierl N =3,B=2 yes 4 49.74 0.11 0.57 37.3 8.07 177.31 17.54 130.31
N=3,B=3 yes 8 120.21 0.39 2.37 97.03 14.69 398.19 19.85 331.06
barrier2 N=2,B=3 yes 9 66.46 4.375 13.613 1.272 35.243 153.67 54.73 10.70
finesetl ar(ar|ar) yes 2 130.44 2.5 4.21 2.55 110.97 161.14 55.46 23.88
ar(ar|ar|ar) yes 1 363.89 0.56 1.03 279.02 74.29 249 29.03 169.38
ar(a|r|al|r) yes 1 196.52 0.73 1.25 112.02 73.86 153.56 29.17 73.88
ar(arar|arar) yes 1 165.43 0.66 1.26 80.02 73.85 259.25 29.14 136.38
ar(aaaalrrrr) yes 2 22554 8.63 12.94 74.12 111.07 345.62 156.81 145.75
fineset2 ar(ar|ar) yes 3 281.46 13.41 15.17 4.03 229.24 260.14 123.77 34.81
ar(ar|ar|ar) yes 3 795.19 12.95 20.58 509.59 232.38 376.63 149.32 233.44
ar(alr|al|r) yes 2 384.83 11.57 13.7 170.42 1711 325.26 169.07 95.75
ar(arar|arar) yes 2 299.97 4.85 6.33 99.82 174.01 346.56 75.68 212.94
ar(aaaalrrrr) yes 3 468.7 40.86 46.3 107.69 228.61 563.1 287.41 227
lazyset ar(aa|rr) yes 12 179.17 5.32 16.6 11.43 107.4 294.03 54.28 11.38
ar(ar|ar) NO 7 100.24 1.88 5.41 2.51 66.49 246.81 41.87 9.81
dinphilo N=3T=5 yes 4 34.03 4.34 4.39 6.22 12.61 194.08 114.33 19.19
N=4T=3 yes 3 54.46 1.96 2.23 36.11 9.93 158.69 53.15 78.75
N=5T=3 yes 3 745.94 3.06 2.99 724.5 10.2 1419.5 83.98 1340.31

Figure 9. Performance results.

tum in recent years, the automatsgnthesisof concurrent algo-
rithms is a relatively new research direction, and most effire-
vious work in the field is designed for synthesis within in &sp
cific domain of algorithms€.g, [5]). Notable in this context is
the recent work on synthesis of concurrent garbage coledtp

Verification of Concurrent Data Structures. Particular con-
current data structures are often checked for correctrsisg au-
tomated provers. Examples include the verification of a pment
wait-free concurrent set implementation [9, 22]. Suchresfoften
rely on massive proof scripts and associated domain-spéagfic

Vechevet al. In an earlier work [23] the authors apply an auto- (e.g, in PVS or some other proof system) that need to be writ-

mated transformational-style space exploration to degievably
correct variants from a basic (correct) concurrent GC immglie-
tation. In a more recent work [24] an exhaustive explorapoo-
cedure is applied to a space of implementationstion variaiith
varying degrees of atomicity and instruction reordering) aom-
bined with effective pruning of vacuously incorrect implemnta-

ten per verification task. In contrast, our framework can eduto
synthesisand automatically verify arbitrary concurrent implemen-
tations with only few assumptions about the underlying akea
model. CheckFence [7] is a tool that can find subtle concayren
bugs occurring under various memory consistency modelgans
erates a counter example that can be used to infer the ajgierfix

tion sub-spaces. In this approach the authors deploy aaepar (i.e., adding memory fences to enforce consistency). Similauto o

verification procedure based on the SPIN model checker (@3]

t approach, checking an imperative concurrent program igcestl

check the absence of concurrency bugs in each of the gederate to a SAT problem, and as such bears similar limitations. tifis

candidate implmenetations. Their framework, unlike oigsapa-
ble of verifying concurrent implementations that manipelarbi-
trary unbounded data structures, thanks to the use of abietran
the verification procedure. This, however, is not an inhieliem
itation of our approach and the use of abstraction-capabie v

ferent from ours in the way that imperative programs are éado
into Boolean circuits. In recent work [2], verifying lingzability of
concurrent heap-manipulating algorithms was done usinai3d
logic abstraction. Here, an abstract interpreter (TVLA}waplied
to capture the (finite) differences between states exhilitetwo

fiers is a work in progress. Also, the generation method used i implementations of the same data structure, and to verdy thi-

their approach heavily depends on tailored semantic rolgsune
the search space effectively, and is restricted to a prestbfaet
of concurrency-related transformations and synchroiaizgtrim-
itives. In contrast, our synthesizer applies generic faansations
to reduce the problem into its 2QBF representation and dedeg
the effort of conducting an effective search to an efficigeteral
purpose SAT-based solver.

fication at linearization points. Although sound and higékpres-
sive, this framework requires apriori knowledge of the dineation
points in a concurrent implementation, and is known to hateri-
ent scalability problems due to the size of the abstract dothat
is being used.

www.manaraa.com

10. Conclusion 9th International Conference on Principles of Distribut8gistems

The paper describes a new sketch synthesizer for the dewetup volume 3974, pages 3-16. Springer, 2005. ‘ _

of concurrent programs, with an emphasis on concurrentstiate- [10] D. Hensgen, R. Finkel, and U. Manber. Two algorithmsidarrier
tures. Sketching affords the programmer the same fine daneo synchronization. International Journal of Parallel Programming
the structure of the resulting program as manual codinglevdti 17(1):1-17, 1988.

the same time allowing him to leave unspecified those partiseof [11] M. Herlihy and N. Shavit.The art of multiprocessor programming

program which are hard to derive by hand. Morgan Kaufmann, 2008.

Our system relies on a CEGIS algorithm to generate candidate [12] M. P. Herlihy and J. M. Wing. Linearizability: a correetss condition
implementations by analyzing traces of failed implemeatst to for concurrent objectsACM Trans. Program. Lang. Sys1.2(3):463—
try to prevent the new candidates from exhibiting the sangsbu 492, 1990.

To our knowledge, ours is the first synthesizer capable afgusi [13] G. J. Holzmann. The model checker SPISoftware Engineering
counterexample traces from failed concurrent programsutdeg 23(5):279-295, 1997.
the search for a correct implementation. : . ;

. . - 14] R. Kowalski. Algorithm = logic + control. Commun. AC

We implemented P&TCH relying on the SPIN verifier and 4 22(7):424-436 1%79_ 9 M

the XETCH synthesis infrastructure. With the system, we have
sketched and synthesized concurrent data structuresdingla) X
Lock-free queue, and a list with hand-over-hand lockinge#gh executes multiprocess programEEE Transactions on Computers

; . 28(9):690-691, 1979.
of these programs, the tricky fragments were exclusivedtdied ()))
and successfully synthesized. [16] A. Silberschatz and P. B. GalvirDperating System Concept3ohn

Wiley & Sons, Inc., New York, NY, USA, 2000.

[17] D. R. Smith. KIDS: A semiautomatic program developmsystem.
Acknowledgment IEEE Transactions on Software Engineerid$(9):1024-1043, 1990.
We want to thank Gilad Arnold for his help with preparation of [18] A. Solar-Lezama, G. Amold, L. Tancau, R. Bodik, V. Sawat, and

[15] L. Lamport. How to make a multiprocessor computer thatectly

the submission manuscript. This paper was influenced by &rym S. Seshia. Sketching stencils. R.DI '07: Proceedings of the 2007
discussions we had with Martin Vechev, Eran Yahav, and Mooly ACM SIGPLAN conference on Programming language design and
Sagiv. We are grateful to the anonymous referees for thépfuie implementationvolume 42, pages 167-178, New York, NY, USA,
comments. This work is supported in part by the National ig®e 2007. ACM.

Foundation with grants CCF-0085949, CNS-0326577, and CNS- [19] A Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebciogluo-P
0524815, a generous gift from IBM Corporation, an IBM Felow gramming by sketching for bit-streaming programs. PloDI '05:
ship, and the University of California MICRO program. Proceedings of the 2005 ACM SIGPLAN conference on Programmi

language design and implementatigrages 281-294, New York, NY,
USA, 2005. ACM Press.

References [20] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, an&&hia.
[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. @asion of Combinatorial sketching for finite programs. ABPLOS '06San
control dependence to data dependenceP@#L '83: Proceedings Jose, CA, USA, 2006. ACM Press.
of the 10th ACM SIGACT-SIGPLAN symposium on Principles of [21] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, an&&hia.
programming languagepages 177-189, New York, NY, USA, 1983. Combinatorial sketching for finite programs. 12th International
ACM. Conference on Architectural Support for Programming Leaggs
[2] D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Caaripon and Operating Systems (ASPLOS 20@@ges 404-415, New York,
under abstraction for verifying linearizability. IBAV '07: 19th NY, USA, 2006. ACM Press.
International Conference on Computer Aided Verificatisalume [22] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Piny
4590, pages 477-490. Springer, 2007. correctness of highly-concurrent linearisable objeatsP?PoPP '06:
[3] D. Andre and S. Russell. Programmable reinforcemeninieg Proceedings of the eleventh ACM SIGPLAN symposium on Plci
agents. Advances in Neural Information Processing Systeh3s and practice of parallel programmingages 129-136, New York,
2001. MIT Press. NY, USA, 2006. ACM.
[4] D. Angluin and C. H. Smith. Inductive inference: Theoryda (23] M. T. Vechev, E. Yahav, and D. F. Bacon. Correctnessqméng
methods ACM Comput. Sury15(3):237—269, 1983. derlvatlo_n of concurrent garbage collection algorithnrsPLDI '06: _
) o Proceedings of the 2006 ACM SIGPLAN conference on Progragimi
[5] Y. Bar-_Dawd an_d G. Taubenfeld. Automatlc_dlscovery ofitonal language design and implementatigages 341-353, New York, NY,
exclusion algorithms. IlPODC '03: Proceedings of the twenty- USA, 2006. ACM.
second annual symposium on Principles of distributed cdimgu)
pages 305-305, New York, NY, USA, 2003. ACM. [24] M. T. Vechev, E. Yahav, D. F. Bacon, and N. Rinetzky. Cguerer:
))) . a semi-automated search procedure for provably correciucent
[6] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimg collectors. InPLDI *07: Proceedings of the 2007 ACM SIGPLAN
matrix multiply using phipac: A portable, high-performanc conference on Programming language design and implenientat
ansi ¢ coding methodology. linternational Conference on pages 456-467, New York, NY, USA, 2007. ACM.

Supercomputingpages 340-347, 1997.

[7] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfencehexking
consistency of concurrent data types on relaxed memory isiode
In PLDI '07: Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementatiaiume 42,
pages 12-21, New York, NY, USA, 2007. ACM.

B. Fischer and J. Schumann. Autobayes: a system for géner
data analysis programs from statistical modé@irnal of Functional
Programming 13(3):483-508, May 2003.

[9] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. S. llland
N. Shavit. A lazy concurrent list-based set algorithmORODIS '05:

8

-

www.manaraa.com

